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INTRODUCTION

The inverse prompt period « is of interest to analyz-
ing the behavior of fast-burst reactors such as Godiva-IV or
pulses in research reactors. The time-dependent problem
is often posed as an static a-eigenvalue problem, which
gives the time constant for the asymptotic rise or fall of
prompt neutrons in a system. The properties of the -
eigenvalue, being the mathematical equivalent of an addi-
tive insertion of a fictitious 1/v (v is the neutron speed)
absorber, makes the problem difficult to solve numerically.
One common approach to solving the a-eigenvalue prob-
lem is to first solve a static k-eigenvalue problem, and then
use that solution to find the /v absorber that would make
k = 1[1]. Two similar approaches are investigated here.
Rather than using the k eigenvalue, which is based on mul-
tiplication, the collision or c-eigenvalue or leakage or I-
eigenvalue equations[2] can be solved instead, and the /v
absorber that makes ¢ = | = 1 is found.

These methods for solving a were implemented into
research multigroup discrete ordinates (Sx) and Monte
Carlo (MC) codes. The results show that using either the
k-, c-, or [-eigenvalue equation will yield the same «. For
many cases, it appears that for Sy the c-eigenvalue may
offer significant efficiency gains toward computing o over
the traditional k-eigenvalue approach. For MC, there ap-
pears to be little consistent trend as to which approach may
be more efficient.

THEORY

The asymptotic inverse prompt period o for quasi-
static analysis may be found using the a-eigenvalue form
of the neutron transport equation by assuming separability
of time from the rest of phase space. If only prompt neu-
trons are of interest, this equation may be written as

(S+M—L—T)%:%wa. (1)

Here S is the operator for scattering, M is the operator for
prompt fission, L is the operator for streaming, and 7" is the
total interaction operator. 1), is the eigenfunction or shape
function for the asymptotically changing neutron popula-
tion during late times.

Since the /v is an additive term, the a-eigenvalue
equation cannot be solved directly with standard iterative
methods used for the k& eigenvalues; however, an indirect

solution by these means is possible by solving for « itera-
tively using a hybrid eigenvalue equation:

(L+T—S+%)w:%Mw. ?)

In this formulation, « is a parameter and the eigenvalue k
is a function of this parameter. For the choice of o = 0,
this hybrid equation becomes the standard k-eigenvalue
problem seen in reactor analysis. Solving for « is done
iteratively. A guess for « is made, and k is solved. If
the solution for k is greater than one, the guess for « is
increased, and if k is less than one, the guess for « is
decreased. This process continues until the « is found
where k£ = 1, at which point the hybrid equation is the a-
eigenvalue equation, and therefore the a-eigenvalue equa-
tion has been solved.

The choice of solving the k-eigenvalue equation it-
eratively is convenient because many transport codes al-
ready support methods for solving that problem. Alterna-
tive hybrid equations can be written based upon different
eigenvalues, the collision or c-eigenvalue, or leakage or -
eigenvalue. These equations are

(L+T+g)¢:1(S+M)1/), 3)
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The c eigenvalue balances the sources from all collisions
with the losses, and the [ eigenvalue balances all interac-
tions with streaming and can be thought of as a factor to
uniformly increase the density to achieve criticality, effec-
tively changing the neutron mean-free-path. Like before,
a’s can be guessed, c or [ values found, and new guesses
of & made until ¢ = | = 1. At this point, all three hybrid
equations reduce to the a-eigenvalue equation, and there-
fore the o found for each should be identical.

COMPUTATIONAL METHODS

Iterative approaches for solving « using the k, ¢, or [
eigenvalues, hereafter called the k-, c-«, and [-a methods,
are implemented in both Sy and MC. The simplest case of
multigroup, 1-D slab geometry is used, as it is illustrates
the merits and disadvantages of each iterative scheme with-
out unnecessary complications arising from higher dimen-
sionality, curvilinear coordinates, continuous-energy cross
sections, etc. There is every reason, however, that these



iteration schemes can be implemented into more sophisti-
cated Sy or MC packages without any difficulties beyond
those for the simplest case.

The generic eigenvalue x (k, ¢, or [) is solved using a
power iteration scheme, where z in iteration ¢ + 1 may be
found by

Nij1
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where [V; is the number of neutrons produced in (inner) it-
eration 7. For the k eigenvalue, this is the number of fission
neutrons, and for the c and [ eigenvalues, this is the number
of collision neutrons.

Once x is converged, « is found iteratively via an outer
loop. To find « based upon z for outer iteration 7, the stan-
dard updating scheme for o used, and is based on a first-
order Taylor series expansion:

X i 1

a1 = a; + , (6)
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where 7, is the appropriate neutron lifetime given by

()
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Here A, is a generic operator, which is M for the k-
eigenvalue, S + M for the c-eigenvalue, and S + M — T
for the [-eigenvalue cases.

The iterative approach tends to work well for super-
critical systems, but can be problematic for those that are
subcritical. This occurs because negative a/v is the math-
ematical equivalent of a source into the transport equation,
which when it becomes larger than 7' makes the methods
for solving the hybrid equation (either S or MC) numeri-
cally unstable. Therefore, the analysis done here is primar-
ily for supercritical systems.

)

Discrete Ordinates Method

The Sy method involves an inner z-eigenvalue loop
and an outer a-eigenvalue loop. Power iteration is used as
the inner iteration where a guess for a from the outer loop
is used to modify the total cross section. The eigenvalue
calculation proceeds iteratively until a convergence toler-
ance for both the eigenvalue and eigenfunction are met.
Once this is done, a convergence on the outer iteration for
« is assessed. The convergence tolerance requires that both
the eigenvalue be unity within, and the relative change in
« from the previous iteration be less than some tolerance.
For this work, this tolerance is 1 x 10~6. If the tolerance is
not met, the appropriate lifetime is computed and used to
get a new guess for o and the inner loop is repeated. Once
this tolerance is met, the « is considered found and the flux
shape should correspond to .

Monte Carlo Method

The MC method proceeds in a somewhat different
manner than Sy because of the presence of inherent sta-
tistical noise in the calculation. The calculation still has the
notion of an inner z-eigenvalue loop with an a-eigenvalue
loop, except that there are skip cycles for both the outer
and inner iterations. The calculation begins with an initial
guess of a passed into the inner loop where the = eigen-
value is estimated (via a collision estimator) with its sta-
tistical uncertainty; estimates of the appropriate lifetime 7,
are made as well using collision estimators. A new guess
of « is made, and another inner loop is executed. Loops
of the outer iteration are done and discarded until the com-
puted x is within 1o of unity—a more sophisticated con-
vergence test is probably needed for production, but works
well for the simple problems tested—at which point a num-
ber of user-defined active outer iterations are run with the
new guess for o being used as a score for an « tally. At the
end of the outer iterations, the mean value of « is reported
along with an estimate of its statistical uncertainty. In the
future, o may be computed using some weighting average
based upon how well the eigenvalue  matched unity.

Convergence of the [ Eigenvalue

The [ eigenvalue for some cases may have difficulties
with convergence, likely related to its spectrum and the
possible non-existence of a positive, real eigenvalue—there
are many cases where no multiplicative factor on the den-
sity can make a configuration critical. One issue is that
the convergence can be extremely slow and have oscilla-
tory behavior. A simple acceleration that is used is when
this is detected: the next guess is the midpoint between two
previous iterations; this usually improves the convergence
rate by factors of two or more.

Iterating on « can also exhibit the same kind of con-
vergence behavior, and the acceleration to get reasonable
convergence times is the same: taking a midpoint of two
previous « guesses. Additionally, during iterating on «, it
is possible to take a guess that is too large such that no value
of [ exists on the next iteration, as indicated by converging
toward zero. In this case where [ < l,;, = 0.1, the guess
on « is decreased by 10% until one is found where [ exists.

RESULTS

There are three test problems: a bare fast slab with 4-
group cross sections and varied thickness, a low-Z reflected
fast slab (both sides) with 4-group cross sections and var-
ied reflector thickness, and a reflected thermal slab with
8-group cross sections and varied fuel to moderator con-
centration. The fast bare slab thickness was varied from 18
cm (slightly subcritical) to 30 cm; the reflector thickness



was varied from 1.5 cm to 10 cm with a fixed fast core slab
thickness of 15 c¢m; the thermal reflected slab thickness is
10 cm in the core and 5 cm in the reflector on each side,
with the fuel atomic fraction in the core varied from 0.2%
where it is slightly subcritical, becomes supercritical, until
40% where it becomes slightly subcritical again.

For the Sy method, a Sg4 Gauss-Legendre quadrature
set was used with 1000 spatial elements in both the core
and the reflector when present; a reflecting boundary con-
dition was used at the midplane for the reflected cases. For
the MC method, 10,000 neutron histories per inner itera-
tion with 50 skip and 500 active inner iterations per outer
iteration, and 250 active outer iterations were used. The «
values between the S and MC calculations agree between
the methods for all three cases regardless of the eigenvalue
x selected.

Discrete Ordinates

The speedup or slowdown is the ratio of the wall-clock
times ¢ it takes to compute the converged « given. Specif-
ically, the speedup is relative to the k-a method, being the
ratio of the ¢ for k-« to the ¢ for either the c-« or I-a meth-
ods. In other words, a speedup of unity means that the time
to convergence is equal to that of the k-o method, greater
if it is faster, and less if it is slower.

Figures 1-3 give the speedups for the methods for the
bare-fast, reflected-fast, and reflected-thermal cases respec-
tively. In this case, the c-a method always outperforms
the k-a method, which significantly outperforms the [-a
method. This is likely because the c-aw method, doing an
update every collision “generation” as opposed to fission
generation, is using information more frequently. The one
trend of note is that for the fast-reflected case, the c-a
method tends to be more efficient as the reflector thickness
increases.
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Fig. 1. Speedup of Sy methods for computing o on the
bare-fast case.
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Fig. 2. Speedup of S methods for computing o on the
reflected-fast case.
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Fig. 3. Speedup of Sy methods for computing @ on the
reflected-thermal case.

Monte Carlo

Because of statistical fluctuations in a Monte Carlo
calculation, assessing performance is not as simple of a
matter as comparing wall-clock times. Performance of MC
methods is typically assessed with the Figure-of-Merit,

1

FOM = o ()
where R is the relative statistical uncertainty in «, and ¢ is
the wall-clock time of the active outer iterations. As with
the comparisons with Sy, the value is relative to the k-
a method. Since in this case a larger FOM means better,
the ratio is inverse the S : the FOM for the method being
compared to the FOM for the k-a method, which is called
the “relative performance”.

Figures 4-6 give the relative performance for the three
cases. Unfortunately, the trends for the MC methods are
much less clear than for Sy . The [ eigenvalue sometimes
appears to be superior in this case, but not always.



18

16

14

12

Relative Performance

0.6

0.4

18 20 22 24 26 28 30
Core Thickness (cm)

Fig. 4. Relative performance of MC methods for comput-
ing a on the bare-fast case.
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Fig. 5. Relative performance of MC methods for comput-
ing « on the reflected-fast case.
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Fig. 6. Relative performance of MC methods for comput-
ing a on the reflected-thermal case.

Perhaps the metric used is not entirely fair as it looks
at the apparent variance in « for the method and the fo-

tal time spent in the active outer iterations. MC eigenvalue
calculations tend to under predict the uncertainties of cal-
culated values, i.e., the code states the result is more certain
than it actually is. This is typically small for the k eigen-
value (a few tens of percent is typical), but this issue has
not been yet investigated for the ¢ and the [ eigenvalues,
let alone for . Furthermore, the S method merely mea-
sured time to convergence, whereas the MC method used a
fixed number of inactive cycles each execution of the inner
loop regardless of how long it took to actually converge the
eigenvalue—unlike Sy, automated convergence checks are
problematic in MC because of statistical noise.

CONCLUSIONS & FUTURE WORK

The k-, c-a, and [-a methods were developed in both
Sy and MC, and compared using multigroup test prob-
lems. For Sy, the c-a method often had superior perfor-
mance, but for MC, the trends are less clear for reasons
discussed.

The current approach of inner and outer iterations is
the simplest way, and more efficient approaches of updat-
ing o« within the inner iterations needs to be investigated
to see if it impacts conclusions. Furthermore, more effort
needs to be done to have a more fair comparison of the MC
methods, which could involve convergence detection so in-
active iterations are not needlessly wasted, and a study of
how poorly MC predicts uncertainties in « for the various
methods.
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